

August 30, 2005 Workshop

Terminologies and ontologies in biomedicine: Can text mining help?

Biomedical resources for text mining

Olivier Bodenreider

Lister Hill National Center for Biomedical Communications Bethesda, Maryland - USA

Overview

- ◆ An example
- ◆ Three types of resources
 - Lexical resources
 - Terminological resources
 - Ontological resources
- **♦** Some issues

An example

Neurofibromatosis 2

Neurofibromatosis 2

Neurofibromatosis type 2 (NF2) is often not recognised as a distinct entity from peripheral neurofibromatosis. NF2 is a predominantly intracranial condition whose hallmark is bilateral vestibular schwannomas. NF2 results from a mutation in the gene named merlin, located on chromosome 22.

[Uppal, S., and A. P. Coatesworth. "Neurofibromatosis Type 2." *Int J Clin Pract*, 57, no. 8, 2003, pp. 698-703.]

Entity recognition

Neurofibromatosis type 2 (NF2) is often not recognised as a distinct entity from peripheral neurofibromatosis. NF2 is a predominantly intracranial condition whose hallmark is bilateral vestibular schwannomas. NF2 results from a mutation in the gene named merlin, located on chromosome 22.

Relation extraction

Neurofibromatosis type 2 (NF2) is often not recognised as a distinct entity from peripheral neurofibromatosis. NF2 is a predominantly intracranial condition whose hallmark is bilateral vestibular schwannomas. NF2 results from a mutation in the gene named merlin, located on chromosome 22.

- vestibular schwannomas *manifestation of* neurofibromatosis 2
- neurofibromatosis 2 associated with mutation of NF2 gene
- NF2 gene *located on* chromosome 22

Resources for text mining

Types of resources

- ◆ Lexical resources
 - Collections of lexical items
 - Additional information
 - Part of speech
 - Spelling variants
 - Useful for entity recognition
 - UMLS SPECIALIST Lexicon, WordNet

- Ontological resources
 - Collections of
 - kinds of entities (substances, qualities, processes)
 - relations among them
 - Useful for relation extraction
 - UMLS Semantic Network,
 SNOMED CT

Types of resources (revisited)

- ◆ Lexical and terminological resources
 - Mostly collections of names for biomedical entities
 - Often have some kind or hierarchical organization (e.g., relations)
- Ontological resources
 - Mostly collections of relations among biomedical entities
 - Sometimes also collect names

Unified Medical Language System

- **♦** SPECIALIST Lexicon
 - 200,000 lexical items
 - Part of speech and variant information
- **♦** Metathesaurus
 - 5M names from over 100 terminologies
 - 1M concepts
 - 16M relations
- **♦** Semantic Network
 - 135 high-level categories
 - 7000 relations among them

Lexical resources

Terminological resources

Ontological resources

Lexical resources

SPECIALIST Lexicon

SPECIALIST Lexicon

- **♦** Content
 - English lexicon
 - Many words from the biomedical domain
- ◆ 200,000+ lexical items
- ◆ Word properties
 - morphology
 - orthography
 - syntax
- ◆ Used by the lexical tools

SPECIALIST Lexicon record

```
base=hemoglobin (base form)
spelling_variant=haemoglobin
entry=E0031208 (identifier)
cat=noun (part of speech)
variants=uncount (no plural)
variants=reg (plural: hemoglobins, haemoglobins)
}
```


Lexical tools

- ◆ To manage lexical variation in biomedical terminologies
- ◆ Major tools
 - Normalization
 - Indexes
 - Lexical Variant Generation program (lvg)
- **♦** Based on the SPECIALIST Lexicon
- ◆ Used by noun phrase extractors, search engines

Normalization

Normalization: Example

Hodgkin Disease HODGKINS DISEASE Hodgkin's Disease Disease, Hodgkin's Hodgkin's, disease HODGKIN'S DISEASE Hodgkin's disease Hodgkins Disease Hodgkin's disease NOS Hodgkin's disease, NOS Disease, Hodgkins Diseases, Hodgkins **Hodgkins Diseases** Hodgkins disease hodgkin's disease Disease, Hodgkin

normalize disease hodgkin

Normalization Applications

- ◆ Model for lexical resemblance
- ◆ Help find lexical variants for a term
 - Terms that normalize the same usually share the same LUI
- ◆ Help find candidates to synonymy among terms
- ◆ Help map input terms to UMLS concepts

Terminological resources

UMLS Metathesaurus

Source Vocabularies

(2005AA)

- ◆ 134 source vocabularies
 - 132 contributing concept names
- ◆ Broad coverage of biomedicine
 - 5M names
 - 1M concepts
 - 16M relations
- **◆** Common presentation

Integrating subdomains

Addison's Disease: Concept

Organize concepts

- ◆ Inter-concept relationships: hierarchies from the source vocabularies
- Redundancy: multiple paths
- One graph instead of multiple trees (multiple inheritance)

Metathesaurus concepts Examples

Neurofibromatosis type 2	S	C0027832	Neurofibromatosis 2
NF2	S	C0085114	Neurofibromatosis 2 genes
peripheral neurofibromatosis	S	C0027831	Neurofibromatosis 1
[bilateral] vestibular schwannomas	a	C0027859	Neuroma, Acoustic
mutation / mutations	S	C0026882	Mutation
gene	S	C0017337	Genes
merlin	m	C0254123	Neurofibromin 2
chromosome 22	S	C0008665	Chromosomes, Human, Pair 22

Metahesaurus relations Examples

◆ Neurofibromin 2

Multiple parent concepts

Membrane proteins [MeSH]

Tumor suppressor proteins [MeSH]

Signaling protein [NCI Thesaurus]

• 1 child concept

Merlin, Drosophila [MeSH]

Co-occurring concepts in MEDLINE

Neurofibromatosis 2 [13]

Membrane proteins [8]

...

Ontological resources

UMLS Semantic Network

Semantic Network

- ◆ Semantic types (135)
 - tree structure
 - 2 major hierarchies
 - Entity
 - Physical Object
 - Conceptual Entity
 - Event
 - Activity
 - Phenomenon or Process

Semantic Network

- ◆ Semantic network relationships (54)
 - hierarchical (isa = is a kind of)
 - among types
 - Animal isa Organism
 - Enzyme *isa* Biologically Active Substance
 - among relations
 - treats *isa* affects
 - non-hierarchical
 - Sign or Symptom diagnoses Pathologic Function
 - Pharmacologic Substance *treats* Pathologic Function

"Biologic Function" hierarchy (isa)

Associative (non-isa) relationships

Relationships can inherit semantics

Ambiguity

Limited coverage

- ◆ e.g., Gene and protein names
 - Additional sources
 - Additional identification methods

Genew	http://www.gene.ucl.ac.uk/nomenclature/	
Entrez Gene	http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene	
UniProt	http://www.ebi.uniprot.org/index.shtml	

Conclusions

Conclusions

- ◆ Lexical and terminological resources enable entity recognition
- ◆ Terminological and ontological resources enable relation extraction

But...

- ◆ Text mining techniques can also benefit
 - Terminologies: term extraction
 - Ontologies: ontology population

UMLS documentation and support

- ◆ UMLS homepage http://umlsinfo.nlm.nih.gov/
 - with links to all other UMLS information
- ◆ UMLSKS homepage http://umlsks.nlm.nih.gov/
 - with links to the User's and Developer's guides
- ◆ Email address for support custserv@nlm.nih.gov

Medical Ontology Research

Contact: olivier@nlm.nih.gov

Web: mor.nlm.nih.gov

Olivier Bodenreider

Lister Hill National Center for Biomedical Communications Bethesda, Maryland - USA